spug Documentation
Release 0.1alpha

spuq Development Team

October 07, 2011






CONTENTS

1 Tutorial
L1 FIrstSteps . .« o v o o e e e e e e e e e e e e e e
2 Concepts
2.1 Bases and OPerators . . . . . . . . L. e e e e e e e e e e e e e e e e e e e e e e e
3 Concept for the implementation of the residual based error estimator
3.1 Model setting . . . . . o . o e e e e e e e e e e e e e e
3.2 Algorithms . . . L . o e e e e e e
3.3 DataStruCtures . . . . v v v v vt v e e e e e e e e e e e e e e e e e e e e
34 0 QUESHONS . . . v o v e e e e e e e e e e e e
4 Weblinks for development
4.1  Codingreferences . . . . . . . . . . e e e e e
4.2 Scientific References . . . . . . . . ..
5 Package spugq.linalg
5.1 Basis .. e e e e e e e e e
52 VeCtOr. . . o v o e e
5.3 0 OPErator . . . . .. e e e e e e e e e e e e e e e
6 Indices and tables
Python Module Index

17
17
17
17

19

21







spuq Documentation, Release 0.1alpha

Contents:

CONTENTS 1



spuq Documentation, Release 0.1alpha

2 CONTENTS



CHAPTER
ONE

TUTORIAL

1.1 First steps

Blah blah blah




spuq Documentation, Release 0.1alpha

4 Chapter 1. Tutorial



CHAPTER
TWO

2.1

CONCEPTS

Bases and operators

Bases and operators form the two closely related central concepts of spuq. This if for several reasons:

Refinement of a basis: gives you a new basis and operators that restrict or project vectors from one basis to the
other

Operators on restricted base can be formed by composition of the operator with restriction or projection operator
Many complicated bases as tensor product bases of simpler bases

Forming of subbases, which is more or less coarsening

Subbases of tensor product bases indexed by multiindex sets can give PCE bases

Function bases: can be evaluated, can be orthogonalised via their Gram matrix, for TP bases via the tensor
product of those matrices

Simple construction: non-orthogonal basis with Gram matrix to orthogonal basis

Operators:

Compositions can be formed efficiently

Note that efficiently here means: if the vectors that the operators act on are large so that the significant portion
of the runtime is spent in some matrix-vector operation

Advantages:

a vector is not just a collection of numbers, you always know where what the numbers mean, since you always
have the basis with it

with the basis alongside you can compute norms in the real space instead of just the Euclidean
you can restrict and project

you cannot easily mess up since the operators check that the vectors come from their domain

2.1.1 Some mathematical notation

We have

HY(D; Ly(Q)) ~ H (D) ® Ly () .1)

where H'(D) is the Sobolev space ...




spuq Documentation, Release 0.1alpha

2.1.2 An example

Some demonstration of operator stuff:

A = FullLinearOperator( 1 + rand(3, 5)
B = FulllinearOperator( 1 + rand(7, 3)
print A.domain_dim(), A.codomain_dim()
print B.domain_dim(), B.codomain_dim()
x = FullVector( rand( 5,1 ) )

print x

Operators can be multiplied:

C =B * A

print C.domain_dim(), C.codomain_dim()

operator composition can be performed in a number of ways:

print B(A(x))
print (B * A) (x)
print B * A % x
print B » (A * x)
print (B * A) * x

similar as above, only as matrices:

print (B*A).as_matrix() * x.as_vector()
print B.as_matrix() » (A.as_matrix() *» x.as_vector())

you can transpose (composed) operators:

AT=A.transpose ()
BT=B.transpose ()
CT=C.transpose ()

y = FullVector( rand( CT.domain_dim(),1 ) )
print CTxy
print ATx* (BTxy)

can add and subtract operators:

print (B * (A+A))*x
print Cxx+C#*x
print (C-C)*x
print Cxx-Cxx

you can pre- and post-multiply vectors with scalars:

print 3xx-x%*3

you can multiply operators with scalars or vectors with scalars:

print (3+C) *x
print (Cx3)*x
print 3x (Cxx)

Note: This example was copied verbatim from test-zone/operators/test-operator-algebra.py

6 Chapter 2. Concepts



CHAPTER
THREE

CONCEPT FOR THE IMPLEMENTATION
OF THE RESIDUAL BASED ERROR
ESTIMATOR

In this document all necessary formulas for the implementation of the residual-based a posteriori error estimator for
the SGFEM method proposed by C. Gittelson and Ch. Schwab shall be collected.

Basic guidelines for this document
* all necessary formulas shall be collected, such that a complete workflow could be implemented from it
* math formulas should all be supplemented by code sketches

* the prose need not be nice, better complete

3.1 Model setting

Elliptic boundary value problem
—V(a-Vu)= fin D 3.1

Homogeneous Dirichlet boundary conditions w = 0 on D

D is a Lipschitz domain. For the application we will restrict this to a rectangular domain, maybe simply [0, 1], ok?
Definition in FEniCS will look like:

# create mesh and define function space
mesh = UnitSquare(l, 1)
V = FunctionSpace (mesh, ’'CG’, 1)

3.1.1 Coefficient

The coefficient has the form

M
a(y,z) = a(z) + Z Ym@m ()

m=1



http://fenicsproject.org/

spuq Documentation, Release 0.1alpha

Note: How do we define the functions a,, (z) on the FunctionSpace object V in FEniCS how to we embed this into a

spuq Basis object?

What kind of functions shall we take for the a,, first? Piecewise? Trigonometric? What about a? Constant?

Specification of the random variables y,,,. Need to be defined on [—1, 1] with #supp(y.,,) = co. Take simply uniform

U(—1,1)? Needs to be symmetric?

3.1.2 Operator

Continuous operator

Discrete operator

For each 1 we have some V,

solution has the form

ordered basis B, = {b,;} of V,,

for each vector wy, = [...wy; ... }T of length #B,, we discretise equation (3.2).

Evaluation of the discrete operator A,,,:

Anz =Ky ® Am
A=A+ i Am
m=1

w(y,z) = Z wy () Pu(y)

pEAN

#By
w(y’ 33) = Z Z wu,ibu,i(x)Pu(y)

peEAN i=1

3.2)

8 Chapter 3. Concept for the implementation of the residual based error estimator


http://fenicsproject.org/

spuq Documentation, Release 0.1alpha

A = MultiOperator( a, rvs )

P = PDE()
def MultiOperator.apply( w ):
beta = rvs.get_orthogonal_poly () .monic_coeffs

v = MultiVector ()
delta = w.active_set ()
for mu in delta:
AQ0 = P.assemble( a[0], w[mu].basis )
v[mu] = A0 % w[mu]
for m in xrange(1,100):
Am = P.assemble( a[m], w[mu].basis )
mul = mu.add( (m,1) )
if mul in Delta:
vimu] += Am % beta(m, mu[m] + 1) » w[mul].basis.project (w[mu].basis.mesh, INTERPOLATE,
mu2 = mu.add( (m,-1) )
if mu2 in Delta:
v[imu] += Am % beta(m, mu[m]) * w[mu2].basis.project (w[mu].basis.mesh, INTERPOLATE)
return v

3.2 Algorithms

3.2.1 Solve algorithm

Solve algorithm:

def solve( eps, w0, etal, chi ):

w=w0; eta=etal;

for i in xrange(1l,):
[w,zeta]l=pcg ( w, chisxi )
(eta,eta_S)=error_estimator ( w, zeta )
if eta<=eps:

return w

w=refine (w,eta_3S)

Identification of variables:
* eps = ¢, threshold for the total estimated error

e w0 = w?\,, initial solution, is a collection of multiindices with associated vectors that include the basis used for
this multiindex; the parameter V1°70 is included in w0

* xi0 = ¢9 error bound of the initial solution (?), estimate £° := (1 — )~ /2| f||y~ (see note 3)

e chi =y parameter that determines the accuracy of the solver; between 0 and 1 (exclusive)

Note: maybe we can pass (° instead of £° and compute £ using the error estimator, i.e. swapping lines 2 and 3 of
the algorithm

Note: why does V have a different index than w in the paper; should be the same

Note: we rename & to 7; further the error estimator returns also the local error, not only the global one

3.2. Algorithms 9



spuq Documentation, Release 0.1alpha

3.2.2 Error estimator

Definitions

The residual error estimator follows from a partial integration of the residual

(ru(wn),v) = /D fouo —ou(wy) - Vodz, ve Hé(Q),

for some given approximation wy € Vy.

The flux o,, for o € A is defined by

o0
ou(wy) =aVun,, + Y am VB I wy e, + B Ty e, ).
m=1

We have to evaluate the volume and edge contributions in elements 7" € 7, and on edges S € S,, of the error estimator,

Mur(wy) = hrlla™?(f0u0 + V- o (wn)l 27y

1/2) /- —
Mus(wn) = hy *|la= (o, (wn )]s 12(s)

These sum up to the total error estimator
1/2

mu(wn) = D nurwn)®+ Y nuswy)?

TET, SeS,

Note that for conforming piecewise affine approximations (i.e. continuous linear elements) the divergence of o,
simplifies to

oo
V.o,(wy)=Va-Vwy, + Z Van, - V( ;Tm+1HZ+€""wN,u+em + B I wN e, )-

m=1

Algorithm for the evaluation of 7,

MultiVector ()
= MultiIndex( (...) )
TO = IntialMesh({()
w[m] = FenicsVector (TO0)
# sigma_mu
# a = (Function, Function, Function, ... )
newDelta = extend (Delta)
for mu in newDelta:
sigma_x = a[0] ( w[mu] .mesh.nodes ) * w[mu].dx()
for m in xrange(1,100):
mul = mu.add( (m,1) )
if mul in Delta:
sigma_x += a[m] ( w[mu] .mesh.nodes ) % beta(m, mu[m]+1) =\
w[mul] .project ( w[mu] .mesh ) .dx ()
mu2 = mu.add( (m,-1) )
if mu2 in Delta:
sigma_x += a[m] ( w[mu] .mesh.nodes ) * beta(m, mu[m]) =\
w[mu2] .project ( w[mu] .mesh ) .dx()

3 =

10 Chapter 3. Concept for the implementation of the residual based error estimator



spuq Documentation, Release 0.1alpha

The function error_estimator:

def error_estimator( w, zeta, c_eta, c_Q ):

Projection I}, : V,, — V,, for some y,v € A can be an arbitrary map such as the L2-projection, the A-orthogonal
projection or nodal interpolation.

3.2.3 Refinement

The marking/refinement procedure is three-fold:

1. (for active indices p € A) evaluation of the residual error estimator 7j,, g(wx) and edge marking of respective
FEM meshes 7,

2. (for active indices and their neighbourhood) estimation of the projection errors and marking of respective FEM
meshes

3. activation of new indices based on the projection estimation of 2.

FEM residuals

We employ an edge-based Dorfler marking strategy for all edges S € S, with the edge indicator
1/2

. 1
Ny,S = UM,S(U)N)Q + dr1 E nu,T(wN)z
T: S€85,No0T

such that, for some parameter 0 < ¥,, < 1, a set

S C U{N}XSM

pHEA

of small cardinality is obtained for which holds

D s 205> mu(wn)?

(1,8)€8, HEA

Let Tnv = U, ea{n} x 7, encode the set of all elements of all meshes paired with the respective multiindex , i.e.
for all element T" € 7, for any ;1 € A there is a tuple (1, T') € Ty.

Let 7;, C T be the subset of elements which have at least one edge in Su and mark these elements for refinement.

Projection errors

TODO

Activation of new indices

TODO

3.2. Algorithms 11



spuq Documentation, Release 0.1alpha

3.2.4 PCG

This should be implemented as a standard preconditioned conjugate gradient solver, where the special treatment nec-
essary for the specific structure of w is hidden in a generalised vector class (FEMVector) that takes care of that.

Meaning of the variables

* p = r residual

* s = s preconditioned residual

* v = v search direction

* w = w solution

» (is the enery norm (w.r.t. A) of the preconditioned residual s, i.e. lIsl1%
Algorithm:

def pcg( A, A_bar, w0, eps ):
# use forgetful_ vector for vectors

w[0] = wO

r[0] = £ - apply (A, w[O])
v[0] = solve(A_bar, r[0])
zeta[0] = r[0].inner(s[0])

for i in count (1) :
if zetal[i-1] <= eps#**2:
return (w[i-1], zetal[i-1])

z[i-1] = apply (A, v[i-1])
alphal[i-1] = z[i-1].inner(v[i-1])
w[i] = w[i-1] + zetal[i-1] / alpha[i-1] % v[i-1]

r[{i] = r[i-1] - zetal[i-1] / alphali-1] » z[i-1]
s[i] = solve(A_bar, r[il])

zetal[i] = r[i].inner(s[i])

v[i] = s[i] - zetal[i] / zetal[i-1] * v[i-1]

3.3 Data structures

3.3.1 Vectors

Sketch for the generalised vector class for w which we call MultiVector:

class MultiVector (object) :
#map multiindex to Vector (=coefficients + basis)
def _ init__ (self):
self.mi2vec = dict ()

def extend( self, mi, vec ):
self.mi2vec[mi] = vec

def active_indices( self ):
return self.mi2vec.keys ()

def get_vector( self, mi ):
return self.mi2vec[mi]

def _ add_ (self, other):
assert self.active_indices () == other.active_indices ()

12 Chapter 3. Concept for the implementation of the residual based error estimator



spuq Documentation, Release 0.1alpha

newvec = FooVector ()
for mi in self.active_indices() :

newvec.extend( mi, self.get_vector (mi)+other.get_vector (mi))
return newvec

def mul__ () :

pass

def sub__ () :

pass

The MultiVector needs a set of normal vectors which represent a solution on a single FEM mesh:

class FEMVector (FullVector) :
INTERPOLATE = "interpolate"

def _ init_ (self, coeff, basis ):
assert isinstance( basis, FEMBasis )
self.FullVector._ _init_ (coeff, basis)

def project (self, basis, type=FEMVector.INTERPOLATE) :
assert isinstance( basis, FEMBasis )
newcoeff = FEMBasis.project( self.coeff, self.basis, basis, type )
return FEMVector ( newcoeff, basis )

The FEMVector ‘s need a basis which should be fixed to a ‘‘FEMBasis and derivatives
(which could be a FEniCS or dolfin basis or whatever FEM software is underlying it):

class FEMBasis (FunctionBasis) :
def _ init_ (self, mesh):
self.mesh = mesh
def refine(self, faces):
(newmesh, prolongate, restrict)=self.mesh.refine( faces )
newbasis = FEMBasis ( newmesh )
prolop = Operator( prolongate, self, newbasis )
restop = Operator( restrict, newbasis, self )
return (newbasis, prolop, restop)

@override

def evaluate(self, x):
# pass to dolfin
pass

@classmethod

def project ( coeff, oldbasis, newbasis, type ):
# let dolfin do the transfer accoring to type
pass

The FEMBasis needs a mesh class for refinement and transfer of solutions from one mesh to another. This mesh shall
have derived class that encapsulat specific Mesh classes (that come e.g. from Dolfin)

# in spuq.fem?
class FEMMesh( object ):
def refine( self, faces ):
return NotImplemented

# in spuqg.adaptors.fenics
class FenicsMesh( FEMMesh ):

3.3. Data structures 13



spuq Documentation, Release 0.1alpha

def _ init__ (self):
from dolfin import Mesh
self.fenics_mesh = Mesh()

def refine( self, faces ):
new_fenics_mesh = self.fenics_mesh.refine (faces)
prolongate = lambda x: fenics.project( x, fenics_mesh,
new_fenics_mesh )
restrict = lambda x: fenics.project( x, new_fenics_mesh,
fenics_mesh )
return (Mesh( new_fenics_mesh ), prolongate, restrict)

Refinement:

b0 = FEMBasis( FEniCSMesh () )
coeffs = whatever ()

v0 = FEMVector ( coeffs, b0 )
faces = marking_strategy( foo )

(bl, prol, rest) = bO.refine( faces )
vl = prol( vO0 )

assert vl.get_basis() == bl

assert vl._ class__ == v2._ _class___

3.4 Questions

* What kind of requirements are there for the projectors II?

14 Chapter 3. Concept for the implementation of the residual based error estimator



CHAPTER
FOUR

WEBLINKS FOR DEVELOPMENT

This file contains links that aid in the development of spuq. This should not be a general link collection but should
only contain links that are often needed to look up stuff with out asking google again and again for the same stuff.
Links that are included should be:

4.1 Coding references

4.1.1 Programming resources
Python
Libraries

* numpy reference: http://docs.scipy.org/doc/numpy/reference/
e numpy user guide: http://docs.scipy.org/doc/numpy/user/

* scipy reference: http://docs.scipy.org/doc/scipy/reference/

* numpy/scipy cookbook: http://www.scipy.org/Cookbook

e Traits user manual: http://github.enthought.com/traits/traits_user_manual/index.html

4.1.2 Version control

* git resources from numpy: http://docs.scipy.org/doc/numpy/dev/gitwash/git_resources.html#git-resources
* git cheat sheet: http://help.github.com/git-cheat-sheets/

* the git book: http://book.git-scm.com/index.html
4.1.3 Writing documentation

Sphinx

 Sphinx: http://sphinx.pocoo.org/contents.html

e autodoc: http://sphinx.pocoo.org/ext/autodoc.html

15


http://docs.scipy.org/doc/numpy/reference/
http://docs.scipy.org/doc/numpy/user/
http://docs.scipy.org/doc/scipy/reference/
http://www.scipy.org/Cookbook
http://github.enthought.com/traits/traits_user_manual/index.html
http://docs.scipy.org/doc/numpy/dev/gitwash/git_resources.html#git-resources
http://help.github.com/git-cheat-sheets/
http://book.git-scm.com/index.html
http://sphinx.pocoo.org/contents.html
http://sphinx.pocoo.org/ext/autodoc.html

spuq Documentation, Release 0.1alpha

reStructuredText

* Quickref: http://docutils.sourceforge.net/docs/user/rst/quickref.html
* Wikipedia: http://en.wikipedia.org/wiki/ReStructured Text
* Wikipedia.de: http://de.wikipedia.org/wiki/ReStructuredText

* Emacs mode: http://docutils.sourceforge.net/docs/user/emacs.html

4.2 Scientific References

4.2.1 Quadrature

4.2.2 Orthogonal polynomials

16 Chapter 4. Weblinks for development


http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://en.wikipedia.org/wiki/ReStructuredText
http://de.wikipedia.org/wiki/ReStructuredText
http://docutils.sourceforge.net/docs/user/emacs.html

CHAPTER
FIVE

PACKAGE SPUQ.LINALG

The basic linear algebra classes of spuq, abstracting the concepts of bases, vectors, and operators.

5.1 Basis

class spug.linalg.basis.Basis
Bases: object

Abstract base class for basis objects
dim
The dimension of this basis.

exception spug.linalg.basis.BasisMismatchError
Bases: exceptions.ValueError

class spug.linalg.basis.CanonicalBasis (dim)
Bases: spug.linalg.basis.Basis

dim
class spug.linalg.basis.FunctionBasis

Bases: spug.linalg.basis.Basis

gramian
The Gramian as a LinearOperator (not necessarily a matrix)

spug.linalg.basis.check_basis (basisl, basis2, descrl="basisl’, descr2="basis2’)
Throw if the bases do not match

5.2 Vector

5.3 Operator

17



spuq Documentation, Release 0.1alpha

18 Chapter 5. Package spugq.linalg



CHAPTER
SIX

* genindex
* modindex

INDICES AND TABLES

19



spuq Documentation, Release 0.1alpha

20 Chapter 6. Indices and tables



PYTHON MODULE INDEX

spug.linalg.basis, 17

21



	Tutorial
	First steps

	Concepts
	Bases and operators

	Concept for the implementation of the residual based error estimator
	Model setting
	Algorithms
	Data structures
	Questions

	Weblinks for development
	Coding references
	Scientific References

	Package spuq.linalg
	Basis
	Vector
	Operator

	Indices and tables
	Python Module Index

